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I × J × 2 ARRAYS∗
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Abstract. Computing the Candecomp/Parafac (CP) solution of R components (i.e., the best
rank-R approximation) for a generic I×J×2 array may result in diverging components, also known as
“degeneracy.” In such a case, several components are highly correlated in all three modes, and their
component weights become arbitrarily large. Evidence exists that this is caused by the nonexistence
of an optimal CP solution. Instead of using CP, we propose to compute the best approximation by
means of a generalized Schur decomposition (GSD), which always exists. The obtained GSD solution
is the limit point of the sequence of CP updates (whether it features diverging components or not)
and can be separated into a nondiverging CP part and a sparse Tucker3 part or into a nondiverging
CP part and a smaller GSD part. We show how to obtain both representations and illustrate our
results with numerical experiments.
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1. Introduction. Hitchcock [16, 17] introduced a generalized rank and related
decomposition of a multiway array or tensor. The same decomposition was proposed
independently by Carroll and Chang [3] and Harshman [13] for component analysis
of three-way data arrays. They named it Candecomp and Parafac, respectively. We
denote the Candecomp/Parafac (CP) model, i.e., the decomposition with a residual
term, as

Z =
R∑

h=1

ωh (ah ⊗ bh ⊗ ch) + E,(1.1)

where Z is an I × J × K data array, ωh is the weight of component h, ⊗ denotes the
outer product, and ‖ah‖ = ‖bh‖ = ‖ch‖ = 1 for h = 1, . . . , R, with ‖ · ‖ denoting
the Frobenius norm. To find the R components ah ⊗ bh ⊗ ch and the weights ωh,
an iterative algorithm is used which minimizes the Frobenius norm of the residual
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array E. For an overview and comparison of CP algorithms, see Hopke et al. [18] and
Tomasi and Bro [45].

The rank of a three-way array Z is defined in the usual way, i.e., the smallest
number of rank-1 arrays whose sum equals Z. A three-way array has rank 1 if it
is the outer product of three vectors, i.e., a ⊗ b ⊗ c. We denote three-way rank as
rank⊗(Z). It follows that the CP model tries to find a best rank-R approximation to
the three-way array Z.

The real-valued CP model, i.e., where Z and the model parameters are real-valued,
was introduced in psychometrics (Carroll and Chang [3]) and phonetics (Harshman
[13]). Later on, it was also applied in chemometrics and the food industry (Bro [1]
and Smilde, Bro, and Geladi [37]). For other applications of CP in psychometrics,
see Kroonenberg [25]. Complex-valued applications of CP occur in signal processing,
especially wireless telecommunications; see Sidiropoulos, Giannakis, and Bro [35],
Sidiropoulos, Bro, and Giannakis [36], and De Lathauwer and Castaing [9]. Also, CP
describes the basic structure of fourth-order cumulants of multivariate data on which
a lot of algebraic methods for independent component analysis are based (Comon
[4], De Lathauwer, De Moor, and Vandewalle [5], and Hyvärinen, Karhunen, and
Oja [20]). In this paper, we consider the real-valued CP model. All occurrences of
three-way rank are assumed to be over the real field.

For later use, we mention that the CP model (1.1) is a special case of the Tucker3
model of Tucker [46]. The latter is defined as

Z =
R∑

h=1

P∑
i=1

Q∑
j=1

ghij (ah ⊗ bi ⊗ cj) + E.(1.2)

Clearly, the case with R = P = Q and ghij = 0 if (h, i, j) �= (h, h, h) yields (1.1). The
R × P × Q array G with entries ghij is referred to as the core array. The matrices
[a1| . . . |aR], [b1| . . . |bP ], and [c1| . . . |cQ] are called the component matrices.

A matrix notation of the CP model (1.1) is as follows. Let Zk (I × J) and Ek

(I × J) denote the kth slices of Z and E, respectively. Then (1.1) can be written as

Zk = ACk BT + Ek, k = 1, . . .K,(1.3)

where the component matrices A (I ×R) and B (J ×R) have the vectors ah and bh

as columns, respectively, and Ck (R×R) is the diagonal matrix with the kth elements
of the vectors ωhch on its diagonal. The model part of the CP model is characterized
by (A,B,C), where component matrix C (K × R) has the vectors ch as columns.
Hence, it is assumed that the weights ωh are absorbed by the matrix C.

The most attractive feature of CP is its uniqueness property. Kruskal [26] has
shown that, for fixed residuals E, the vectors ah, bh, and ch and the weights ωh are
unique up to sign changes and a reordering of the summands in (1.1) if

kA + kB + kC ≥ 2 R + 2,(1.4)

where kA, kB, kC denote the k-ranks of the component matrices. The k-rank of a
matrix is the largest number x such that every subset of x columns of the matrix
is linearly independent. If a CP solution is unique up to these indeterminacies, it is
called essentially unique. Two CP solutions which are identical up to the essential
uniqueness indeterminacies will be called equivalent.

In case one of the component matrices A, B, and C has full column rank, a
weaker uniqueness condition than (1.4) has been derived by Jiang and Sidiropoulos
[22] and De Lathauwer [7]. See also Stegeman, Ten Berge, and De Lathauwer [41].
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The practical use of CP has been hampered by the occurrence of diverging CP
components, also known as “degeneracy.” In such cases, convergence of a CP algo-
rithm is extremely slow, and some components display the following pattern. Let
the model parameters of the nth update of a CP algorithm be denoted by a super-
script (n). For the diverging components, the weights ω

(n)
h become arbitrarily large

in magnitude, and the corresponding columns in A(n), B(n), and C(n) become nearly
linearly dependent. Although the individual diverging components may diverge in
nearly opposite directions, their sum still contributes to a better fit of the CP model.
Diverging CP components are a problem to the analysis of three-way arrays, since the
obtained CP solution is hardly interpretable. The occurrence of diverging components
can be avoided by imposing orthogonality constraints on the components matrices;
see Krijnen, Dijkstra and Stegeman [24], but this will come with some loss of fit.
Lim [29] shows that diverging components do not occur for nonnegative Z under the
restriction of nonnegative component matrices.

The first case of diverging CP components was reported in Harshman and Lundy
[14]. Contrived examples are given by Ten Berge, Kiers, and De Leeuw [43] and
Paatero [33]. Kruskal, Harshman, and Lundy [27] have argued that diverging CP
components occur due to the fact that the array Z has no best rank-R approximation,
i.e., CP has no optimal solution. They reason that every sequence of CP updates, of
which the objective value is approaching the infimum of the CP objective function,
must fail to converge and displays a pattern of a diverging CP components. This has
recently been proven by Krijnen, Dijkstra, and Stegeman [24].

De Silva and Lim [10] give results on the existence of a best rank-R approximation
of N -way arrays with N ≥ 3. For the three-way CP model, [10] shows that for
R = 1, an optimal CP solution always exists, while for any I, J, K ≥ 2 and any
R ∈ {2, . . . , min(I, J, K)}, a rank-(R + 1) array Z exists which has no optimal CP
solution. Also, [10] shows that all 2× 2× 2 arrays of rank 3 (a set of positive volume
in R

2×2×2) have no optimal CP solution for R = 2 and that, for any I, J, K ≥ 2, the
set of arrays in R

I×J×K , which have no optimal CP solution for R = 2 has positive
volume.

Stegeman [38, 40] has mathematically analyzed diverging CP components occur-
ring for generic I × J × 2 arrays Z and all values of R. In these cases, diverging
components occur if the sequence of CP updates converges to a limit point X, which
has rank larger than R. Formally, these occurrences of diverging components can be
described as follows. There exist disjoint index sets D1, . . . , Dr ⊂ {1, . . . , R} such
that

|ω(n)
h | → ∞ , for all h ∈ Dj , j = 1, . . . , r,(1.5)

while

∥∥∥∥∥
∑

h∈Dj

ω
(n)
h (a(n)

h ⊗ b(n)
h ⊗ c(n)

h )

∥∥∥∥∥ is bounded, j = 1, . . . , r.(1.6)

Stegeman [38, 40] gives a complete characterization of the diverging components (1.5)–
(1.6) in terms of properties of the limit point of the sequence of CP updates. Also,
[40] provides a link between diverging CP components and results from the theory of
matrix pencils and algebraic complexity theory.

The only mathematically analyzed cases of diverging CP components so far are
the contrived examples in Ten Berge, Kiers, and De Leeuw [43] and Paatero [33],
generic I × J × 2 arrays in Stegeman [38, 40], and generic 5 × 3 × 3 and 8 × 4 × 3
arrays, and generic 3× 3 × 4 and 3× 3 × 5 arrays with symmetric slices in Stegeman
[39].
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A numerical example of diverging CP components is the following. Let Z be a
4 × 4 × 2 array with slices

Z1 =

⎡
⎢⎢⎣

−0.5 −1.2 0.3 −0.6
−1.7 1.1 0.1 2.1
0.1 1.1 −0.2 −0.2
0.2 −0.1 0.7 0.1

⎤
⎥⎥⎦ and Z2 =

⎡
⎢⎢⎣

0.8 1.1 −1.7 −0.9
0.7 −1.3 0.2 0.5
1.2 −0.1 −1.1 0.2
0.6 −0.2 1.4 −1.0

⎤
⎥⎥⎦ .

(1.7)

This array was randomly generated such that rank⊗(Z) = 5. Next, we try to fit the
CP model with R = 4 components using the multilinear engine of Paatero [32]. For a
convergence criterion of 1e-15, the algorithm terminates after 162055 iterations with
an objective value of 0.051204 and final CP update

A =

⎡
⎢⎢⎣

0.6787 0.1278 0.6767 −0.6778
−0.6642 −0.7946 −0.6735 0.6693
−0.1189 −0.5895 −0.1464 0.1320
−0.2898 0.0690 −0.2590 0.2746

⎤
⎥⎥⎦ ,(1.8)

B =

⎡
⎢⎢⎣

−0.6870 −0.8259 −0.6919 −0.6895
−0.2365 −0.0386 −0.2609 −0.2481
−0.0509 0.4005 −0.0080 −0.0298
0.6852 0.3949 0.6732 0.6800

⎤
⎥⎥⎦ ,(1.9)

C =
[

1454 −2.8913 1443 2895
789 4.4617 634 1426

]
,(1.10)

where the columns of A and B are normalized to length 1. It can be seen that
columns 1, 3, and 4 in A and B are nearly identical up to a sign change. Also, these
columns have large magnitudes in C. Hence, CP components 1, 3, and 4 appear to
be diverging. The multilinear engine terminates with nearly the same CP update for
all tried random starting values. The alternating least squares CP algorithm gives
the same results.

Since diverging CP components cannot be interpreted, one may wonder whether
they can be avoided. However, the discussion above shows that for some array sizes
and some values of R, there is no best rank-R approximation and, hence, trying to
fit the CP model results in diverging components. To ensure the existence of a best
rank-R approximation, De Silva and Lim [10] propose to consider the closure of the
set of arrays with at most rank R instead. For each array size and value of R, this
involves characterizing the boundary arrays of this set. These are the limit points
of the sequences of CP updates featuring diverging CP components. De Silva and
Lim [10] show that for R = 2, these limit points have rank 3 with the following
decomposition into rank-1 terms:

X = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.(1.11)

In this paper, we apply the idea of De Silva and Lim [10] to the CP model for generic
I × J × 2 arrays Z. Apart from the results in Stegeman [39], this is the only class of
arrays for which the analysis of diverging components is nearly complete. Instead of
fitting the CP model, we propose to find the best approximation of Z in terms of the
generalized Schur decomposition (GSD), which was considered in De Lathauwer, De
Moor, and Vandewalle [6]. The GSD model is the same as (1.3) except that A and
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B are columnwise orthonormal and Ck are upper triangular k = 1, 2. We show that
an optimal solution to the GSD model always exists. Moreover, for I × J × 2 arrays,
the set of feasible GSD solutions equals the closure of the set of feasible CP solutions.
Hence, the optimal GSD solution, if it is unique, is the limit point of the sequence of
CP updates, whether the latter features diverging components or not.

Next, we show how to write the obtained GSD solution in several alternative
forms. First, using the Jordan normal form, the GSD solution may be written as the
sum of the nondiverging CP components and a sparse Tucker3 part. Here, each of the
m sets of diverging CP components in (1.5)–(1.6) forms one block in the Tucker3 part.
We call this the CP+Jordan form. Although this is not a decomposition into rank-1
terms, it is an essentially unique decomposition, and its blocks may be interpretable
to the researcher. Second, the obtained GSD solution may be written as the sum of
the nondiverging CP components and a smaller GSD part. We call this the CP+GSD
form. If one is only interested in obtaining the nondiverging CP components, this is
a fast way to get them. Third, using the CP+Jordan form, the GSD solution may
also be written as a sum of rank-1 terms where the number of terms equals the rank
of the solution array. However, this rank-revealing decomposition is not essentially
unique. During the computation of the GSD solution, the problems of diverging CP
components do not arise, neither during the computation of the mentioned alternative
forms for the GSD solution.

As explained above, the analyzed cases of diverging CP components most likely
occur because the CP model has no optimal solution. Hence, modified CP algorithms
designed to avoid diverging components (e.g., Rayens and Mitchell [34], Cao et al. [2])
are no remedy here. With our method for I × J × 2 arrays, the problems of diverging
CP components are avoided without imposing additional constraints.

Note that the occurrences of diverging CP components we consider do not include
cases where rank⊗(Z) ≤ R and either its full CP decomposition resembles a case
of diverging components or where diverging components occur due to an unlucky
choice of the starting position of the CP algorithm. Examples of these cases can be
found in Mitchell and Burdick [30] and Paatero [33]. We will assume instead that
rank⊗(Z) > R.

This paper is organized as follows. We discuss the analysis of diverging CP
components for typical I × I × 2 arrays Z of rank I + 1 and R = I in section 3. For
this, we need results on the rank of I × I × 2 arrays. These are presented in section
2. In section 4 we discuss the simultaneous GSD model. In section 5, we consider
the GSD model for I × I × 2 arrays and show how it is related to the CP model. In
section 6, we show how to obtain the CP+Jordan and CP+GSD representations of
the GSD solution. In section 7, we discuss the extension of our analysis for I × I × 2
arrays and R = I to I × J × 2 arrays and general R. Section 8 contains numerical
experiments which illustrate our results. Finally, section 9 provides a discussion.

2. The rank of I × I × 2 arrays. For an array Y ∈ R
I×I×2, we denote its

I × I frontal slices by Yk, k = 1, 2. Let

RI = {Y ∈ R
I×I×2 : det(Yk) �= 0 , k = 1, 2}.(2.1)

The following result on the rank of arrays in RI is due to Ja’ Ja’ [21]. For later use,
we also give its proof as formulated in Stegeman [38].

Lemma 2.1. For X ∈ RI , the following statements hold:
(i) If X2X−1

1 has I real eigenvalues and is diagonalizable, then X has rank I.
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(ii) If X2X−1
1 has at least one pair of complex eigenvalues, then X has at least

rank I + 1.
(iii) If X2X−1

1 has I real eigenvalues but is not diagonalizable, then X has at least
rank I + 1.

Proof. If (i) holds, then X2X−1
1 has an eigendecomposition KΛK−1, where Λ is

the I × I diagonal matrix of eigenvalues and K contains the associated eigenvectors.
Taking

A = K, BT = K−1 X1, C1 = II , C2 = Λ,(2.2)

yields a full rank-I decomposition of X as in (1.3).
The proof of (ii)–(iii) is as follows. Since its I × I slices are nonsingular, it follows

that X has at least rank I. Suppose X has rank I. Then there exist nonsingular
matrices A and B and nonsingular diagonal matrices C1 and C2 such that Xk =
ACk BT , k = 1, 2. But then X2X−1

1 = AC2 C−1
1 A−1 is an eigendecomposition

with I real eigenvalues and I linearly independent eigenvectors, which contradicts
(ii)–(iii). Hence, the rank of X is at least I + 1.

If X satisfies (iii) of Lemma 2.1, the rank of X can be deduced from the Jordan
normal form of X2X−1

1 . This is stated in the following result, also due to Ja’ Ja’ [21].
Lemma 2.2. Let X ∈ RI and suppose X2X−1

1 has I real eigenvalues. Let the
Jordan normal form of X2X−1

1 be given by diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr (μr)),
where Jmj (μj) denotes an mj × mj Jordan block with diagonal elements equal to μj

and mj ≥ 2. Then

rank⊗(X) = I + r.(2.3)

For an eigenvalue λj of an I × I matrix G, we define the algebraic multiplicity
of λj as the multiplicity of λj as root of the characteristic polynomial det(G − λII),
and the geometric multiplicity of λj as the maximum number of linearly independent
eigenvectors of G associated with λj (i.e., the dimensionality of the eigenspace of
λj). Let G = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr(μr)), with mj ≥ 2 for j = 1, . . . , r.
Then the eigenvalues of G are λ1, . . . , λp, μ1, . . . , μr (not necessarily distinct), and
each Jordan block Jmj (μj) adds mj to the algebraic multiplicity of μj and 1 to the
geometric multiplicity of μj . This establishes a relation between the eigenvalues of
X2X−1

1 and the rank of the array X in Lemma 2.2. In particular, if X2X−1
1 has I real

eigenvalues and is diagonalizable, then X has rank I, which is case (i) of Lemma 2.1.
When I × I × 2 arrays are randomly drawn from a continuous distribution, they

have rank I or I + 1, both with positive probability; see Ten Berge and Kiers [44].
Their typical rank is said to be {I, I + 1}. A typical array X of rank I satisfies (i)
of Lemma 2.1, and X2X−1

1 has I distinct real eigenvalues. A typical array X of rank
I + 1 satisfies (ii) of Lemma 2.1, and the eigenvalues of X2X−1

1 are again distinct.
If a three-way array of size I×J×K has a one-valued typical rank, this is called its

generic rank. In this case, a generic I×J×K array has rank equal to its generic rank.

3. Diverging CP components for I × I × 2 arrays of rank I + 1 and
R = I. Here, we discuss the analysis of Stegeman [38] that shows how diverging CP
components occur for typical I × I × 2 arrays of rank I + 1 and R = I. Let

SI = {Y ∈ RI : Y has rank at most I}.(3.1)

Hence, the set SI consists of the arrays in RI which satisfy (i) of Lemma 2.1. Note
that SI contains only arrays of rank I, and not less than I, due to its restriction to RI .
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Let Z ∈ RI be typical and have rank I + 1. Then Z satisfies (ii) of Lemma 2.1.
We consider the following CP problem:

Minimize‖Z− Y‖2(3.2)
subject to Y ∈ SI .

If problem (3.2) has an optimal solution X, then X is a boundary point of SI . The
following result defines the interior points and boundary points of SI in RI and is
due to Stegeman [38].

Lemma 3.1. For X ∈ RI , the following statements hold:
(a) X is an interior point of SI if and only if X2X−1

1 has I distinct real eigen-
values.

(b) X is a boundary point of SI in RI if and only if X2X−1
1 has I real eigenvalues

but not all distinct.
The boundary points in (b) can have rank I or rank ≥ I + 1, depending on

whether X2X−1
1 is diagonalizable (type I) or not (type II); see Lemma 2.1. Hence,

the set SI is not a closed subset of RI , and the existence of an optimal solution for
problem (3.2) is not guaranteed. If problem (3.2) has an optimal solution X, then it
is a boundary point of type I.

Remark 3.2. For a typical Z of rank I + 1, problem (3.2) does not seem to have
an optimal solution in practice. We conjecture the following explanation for this. For
m ≥ 2, define the sets of matrices

B(λ0, m) = {Y ∈ R
I×I : Y has eigenvalue λ0 with algebraic multiplicity m}

= B1(λ0, m) ∪ · · · ∪ Bm(λ0, m),

with

Bl(λ0, m) = {Y ∈ B(λ0, m) : rank(Y − λ0 II) = I − l}, l = 1, . . . , m.

Due to the upper-semicontinuity of matrix rank, the set Bl(λ0, m) lies dense in
Bl(λ0, m)∪ · · · ∪Bm(λ0, m). For a boundary point X of SI , all eigenvalues of X2X−1

1

are real and X2X−1
1 ∈ B(λ0, m) for some eigenvalue λ0 and m ≥ 2 (see Lemma 3.1

(b)). For a boundary point of type I (with rank I), it holds that X2X−1
1 ∈ Bm(λ0, m)

for all multiple eigenvalues λ0 of X2X−1
1 . For a boundary point of type II (with

rank at least I + 1), it holds that X2X−1
1 ∈ Bl(λ0, m), with l < m for some multiple

eigenvalue λ0 of X2X−1
1 . From these observations, it follows that the set of boundary

points of type II lies dense on the boundary of the set SI . As stated above, if problem
(3.2) has an optimal solution, then it is a boundary point of type I. We conjecture
that this implies that, for a typical array Z of rank I +1, problem (3.2) has no optimal
solution.

If problem (3.2) does not have an optimal solution, then the sequence of CP
updates Y(n) converges to a boundary point X of type II (i.e., with X2X−1

1 having
I real eigenvalues and not diagonalizable) such that ‖Z − X‖2 equals the infimum
of ‖Z − Y‖2 over SI . Stegeman [38] shows that when Y(n) converges to X, the
sequence Y(n) features diverging components. This can be seen as follows. The
boundary point X satisfies (iii) of Lemma 2.1, and its rank, which is at least I + 1, is
given by Lemma 2.2. We assume Y(n) to be interior points of SI , i.e., Y(n)

2 (Y(n)
1 )−1

has I distinct real eigenvalues. Then Y(n) has a rank-I decomposition of the form
(2.2). Moreover, for the k-ranks we have kA(n) = kB(n) = I and kC(n) = 2, and
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Kruskal’s condition (1.4) yields that the decomposition is essentially unique. By
continuity, Y(n)

2 (Y(n)
1 )−1 converges to X2X−1

1 . Denote the eigendecomposition of
Y(n)

2 (Y(n)
1 )−1 by K(n)Λ(n)(K(n))−1. The matrix X2X−1

1 has I real eigenvalues but
is not diagonalizable, and we have A(n) = K(n), B(n) = ((K(n))−1Y(n)

1 )T , C(n)
1 = II ,

and C(n)
2 = Λ(n). Let λ be an eigenvalue of X2X−1

1 with algebraic multiplicity strictly
larger than its geometric multiplicity, and associated Jordan block of size m×m. Then
m columns of A(n) converge to the same eigenvector (up to a sign change) of λ, the
corresponding m columns of B(n) tend to linear dependency and large magnitudes,
and the m corresponding columns of C(n) become nearly identical to (1 λ)T . The
pattern of the m CP components is such that their sum does not blow up. Clearly,
this is a case of diverging CP components as defined by (1.5)–(1.6).

The diverging CP components are related to the Jordan form of X2X−1
1 in the way

described above. Hence, based on Lemma 2.2, one may conclude that the number of
groups of diverging CP components equals the rank of the boundary array X minus I.

To illustrate the phenomenon of diverging CP components as described above,
we return to the example in (1.7). For this randomly sampled 4 × 4 × 2 array Z, the
matrix Z2Z−1

1 has one pair of complex eigenvalues. Hence, Z is a typical 4 × 4 × 2
array of rank 5. Trying to fit the CP model with R = 4, results in three diverging
components, as shown in (1.8)–(1.10). Next, we compute the array Y corresponding
to the final CP update, i.e., Yk = ACk BT for k = 1, 2. This Y is an approximation
of the optimal boundary array X. For the eigenvalues of Y2Y−1

1 , we get

−1.5431, 0.4395, 0.4925, 0.5427.(3.3)

Hence, three eigenvalues are close together. This corresponds to the three diverging
components in (1.8)–(1.10) as discussed above.

4. A simultaneous GSD. Here, we introduce the simultaneous GSD (SGSD)
model for I × I ×K arrays and show that it always has an optimal solution. We also
discuss a relation between the CP model and the SGSD model as presented in De
Lathauwer, De Moor, and Vandewalle [6]. In matrix notation, the SGSD model for
an array Z is

Zk = Qa Rk QT
b + Ek, k = 1, . . .K,(4.1)

where Qa and Qb are I×I orthonormal and Rk are I×I upper triangular k = 1, . . . , K.
The matrices Qa, Qb, and Rk are determined by minimizing the sum-of-squares of
the residuals Ek, k = 1, . . . , K. For this purpose, a Jacobi-type algorithm is presented
in [6], and Van der Veen and Paulraj [47] developed an extended QZ algorithm. Like
the CP model, we consider the real-valued SGSD model.

Next, we show that the SGSD model, contrary to the CP model, always has an
optimal solution. Our approach is analogous to Krijnen [23]. We make use of the
following lemma, which can be found in Ortega and Rheinboldt [31, p. 104].

Lemma 4.1. Let g : D ⊂ R
q → R, where D is unbounded. Then all level sets of

g are bounded if and only if g(θn) → ∞ whenever {θn} ⊂ D and ‖θn‖ → ∞.
We define the parameter vector of the SGSD model as

θ = vec(vec(Qa), vec(Qb), vec(R1), . . . , vec(RK)).

Let f(θ) be the sum-of-squares of the residuals of the SGSD model. Since f is contin-
uous, the level sets L(γ) = {θ : f(θ) ≤ γ} are closed. We have the following result.
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Proposition 4.2. All level sets of f are bounded, and the SGSD model has an
optimal solution.

Proof. We have ‖θ‖2 = 2I +
∑K

k=1 ‖Rk‖2. Hence, ‖θn‖ → ∞ implies that
‖Rk‖ → ∞ for at least one k. Moreover,

f(θ)1/2 =
K∑

k=1

‖Zk − QaRkQT
b ‖ ≥

K∑
k=1

∣∣∣‖Zk‖ − ‖QaRkQT
b ‖

∣∣∣ =
K∑

k=1

∣∣∣‖Zk‖ − ‖Rk‖
∣∣∣,

which implies that f(θn) → ∞ whenever ‖θn‖ → ∞. From Lemma 4.1, it follows
that all level sets of f are bounded. Since the level sets are also closed, f attains its
infimum on any nonempty level set. This completes the proof.

Next, we present a relation between the CP model and the SGSD model, which
was partly proven by De Lathauwer, De Moor, and Vandewalle [6]. We have the
following result.

Lemma 4.3. Let X ∈ R
I×I×K . The following statements hold:

(i) If X has a full CP decomposition with R = I, then X has a full SGSD.
(ii) Suppose X1 is nonsingular. Then X has a full CP decomposition with R = I

if and only if XkX−1
1 , k = 1, . . . , K have a simultaneous eigendecomposi-

tion with only real eigenvalues. Moreover, the full CP decomposition of X is
essentially unique if and only if kC ≥ 2.

(iii) Suppose X1 is nonsingular. If X has an essentially unique full CP decompo-
sition with R = I, then the indeterminacies in the full SGSD of X are only
due to the indeterminacies in the full CP decomposition of X.

Proof. First, we show (i). We have Xk = ACk BT , k = 1, . . . , K; see (1.3). Let
A = QaRa be a QR-decomposition of A, with Qa orthonormal and Ra upper trian-
gular. Analogously, let B = QbLb be a QL-decomposition of B, with Qb orthonormal
and Lb lower triangular. Then Xk = Qa (RaCkLT

b )QT
b , k = 1, . . . , K is a full SGSD

for X.
The first part of the proof of (ii) is due to De Lathauwer, De Moor, and Van-

dewalle [6]. Suppose X has a full CP decomposition with R = I. Then we have
XkX−1

1 = ACk C−1
1 A−1, which is an eigendecomposition with real eigenvalues

and shows that XkX−1
1 , k = 1, . . . , K have a simultaneous eigendecomposition.

Next, suppose XkX−1
1 = ACk A−1 for diagonal matrices Ck, k = 2, . . . , K. Then

Xk = ACk A−1 X1. Taking C1 = II and BT = A−1 X1 now yields a full CP
decomposition of X with R = I.

In the CP decomposition of X, we have kA = kB = I. Hence, Kruskal’s condition
(1.4) for essential uniqueness is equivalent to kC ≥ 2. See also Leurgans, Ross, and
Abel [28]. Moreover, kC ≥ 2 is also necessary for uniqueness as is shown in Stegeman
and Sidiropoulos [42].

Next, we show (iii). From (ii), it follows that XkX−1
1 = ACk A−1, k = 2, . . . , K,

and kC ≥ 2. From the full SGSD of X, we obtain that also QT
a XkX−1

1 Qa = RkR−1
1 ,

k = 2, . . . , K have a simultaneous eigendecomposition RaCkR−1
a , with Ra upper

triangular up to a column permutation. From Kruskal’s condition (1.4), it follows
that Rk = RaCkRb, with Rb = R−1

a R1 and C1 = II , is an essentially unique full CP
decomposition. Thus we have XkX−1

1 = QaRaCkR−1
a QT

a = ACkA−1, k = 2, . . . , K,
which implies QaRa = A (since kC ≥ 2). Looking at X−1

1 Xk, we get equivalently
QbRT

b = B. Hence, there are no other indeterminacies in the full SGSD of X than
those implied by CP essential uniqueness. This completes the proof.

From the proof of Lemma 4.3, it follows that a CP decomposition of X (if it exists)
can be obtained from its full SGSD by computing the simultaneous eigendecomposi-
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tion of RkR−1
1 , k = 2, . . . , K. This method is analogous to the one proposed in De

Lathauwer, De Moor, and Vandewalle [6]. For the case I ≤ K a different method is
given in Van der Veen and Paulraj [47].

5. The GSD model for I × I ×2 arrays. Here, we consider the SGSD model
for I×I×2 arrays and discuss its relation with the CP model. Since a (complex-valued)
SGSD for two slices (K = 2) is known as a GSD (see Golub and Van Loan [12]), we
will use the abbreviation GSD. Next, we show which of the arrays in Lemma 2.1 have
a full (real-valued) GSD.

Lemma 5.1. For X ∈ RI , the following statements hold:
(i) If X2X−1

1 has I real eigenvalues and is diagonalizable, then X has a full GSD.
(ii) If X2X−1

1 has at least one pair of complex eigenvalues, then X does not have
a full GSD.

(iii) If X2X−1
1 has I real eigenvalues but is not diagonalizable, then X has a full

GSD.
Proof. If (i) holds, then X has a full CP decomposition with R = I of the form

(2.2). Hence, X also has a full GSD. Next, suppose (ii) holds, and X has a full GSD.
Then X2X−1

1 = QaR2R−1
1 QT

a , and

det(X2X−1
1 − λ II) = det(QT

a X2X−1
1 Qa − λ II) = det(R2R−1

1 − λ II).

Since R2R−1
1 is upper triangular and has only real eigenvalues, it follows that also

X2X−1
1 has only real eigenvalues. But this contradicts (ii). Therefore, X has no full

GSD if (ii) holds.
Next, suppose (iii) holds. Then X2X−1

1 = PJP−1, where J is the Jordan normal
form. Let P = QaRa be a QR-decomposition of P, and let XT

1 Qa = QbLb be a
QL-decomposition of XT

1 Qa. Then

X2 = QaRaJR−1
a QT

a X1 = Qa (RaJR−1
a LT

b )QT
b and X1 = Qa LT

b QT
b(5.1)

is a full GSD of X. This completes the proof.
Note that a full GSD requires R1 and R2 to be upper triangular. This is not

the same as the generalized real Schur decomposition (see Golub and Van Loan [12]),
which always exists for two I × I matrices and which has R1 upper quasi-triangular.

As we see from Lemma 5.1, the arrays satisfying (iii) do not have a full CP
decomposition with R = I but do have a full GSD. Note that the CP decomposition
of arrays satisfying (i) is essentially unique if and only if the eigenvalues of X2X−1

1

are distinct; see (ii) of Lemma 4.3.
Since (iii) of Lemma 4.3 does not apply to the GSD in (5.1), one may wonder what

the uniqueness properties of (5.1) are. The Jordan form J = diag(λ1, . . . , λp,Jm1(μ1),
. . . ,Jmr(μr)) is unique up to the order of the Jordan blocks. If λ1, . . . , λp, μ1, . . . , μr

are distinct, then the columns of P are unique up to the same ordering and up to
scaling. Suppose there is a second GSD, i.e., Xk = Q̃a R̃k Q̃T

b , k = 1, 2. Then there
holds R̃2 R̃−1

1 = (Q̃T
a P)J (Q̃T

a P)−1. In fact, we have Q̃T
a P = R̂Π, with R̂ upper

triangular and Π a permutation. Then R̃2 R̃−1
1 = R̂ (ΠJΠT ) R̂ is a Jordan form

with a different ordering of the Jordan blocks. Hence, the GSD in (5.1) is unique up
to the indeterminacies of the Jordan form of X2X−1

1 .

6. Using the GSD model to avoid diverging CP components. Here, we
show how the relation between the GSD and CP models for I × I × 2 arrays can
be used to avoid the problems of diverging CP components discussed in section 3.
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First, we establish a relation between the set of I × I × 2 arrays that have a full CP
decomposition with R = I, i.e., the set SI in (3.1), and the set of arrays that have a
full GSD. Let

PI = {Y ∈ RI : Y has a full GSD}.(6.1)

Hence, the set PI consists of the arrays satisfying either (i) or (iii) in Lemma 5.1.
From Lemmas 2.1 and 5.1, it follows that SI ⊂ PI . Moreover, Lemmas 3.1 and 5.1
show that PI is the closure of SI in RI and has the same interior points and boundary
points as SI . For the boundary points X of PI and SI , the matrix X2X−1

1 has I real
eigenvalues which are not all distinct; see Lemma 3.1. As explained in Remark 3.2,
the boundary points X of type II, i.e., with X2X−1

1 not diagonalizable, lie dense on
the boundary of PI .

Let Z be a typical I × I × 2 array of rank I +1, i.e., Z satisfies (ii) of Lemma 5.1.
Recall that the CP problem (3.2) for Z usually does not have an optimal solution (see
Remark 3.2). We define the analogue GSD problem as

Minimize‖Z− Y‖2(6.2)
subject to Y ∈ PI .

From the analysis in Stegeman [38], it follows that PI is a closed subset of RI . Hence,
the GSD problem (6.2) has an optimal solution, and a GSD algorithm finds an optimal
solution X of problem (6.2) in terms of its full GSD. We will assume that the optimal
solution X obtained for the GSD problem (6.2) is a boundary point of PI of type
II, i.e., X2X−1

1 has I real eigenvalues but is not diagonalizable. We conjecture (see
Remark 3.2) that this is true almost everywhere for typical Z of rank I + 1.

From the observations above and our discussion in section 3, it follows that the
optimal solution X of the GSD problem (6.2), if it is unique, is the limit point of the
sequence of CP updates (featuring diverging components) which attempts to converge
to the (nonexisting) optimal solution of the CP problem (3.2).

Next, we show how to extract the nondiverging CP components from the optimal
GSD solution. The limit point of the diverging CP components can be obtained from
the optimal GSD solution as a Tucker3 part from the Jordan form of X2X−1

1 or as a
smaller GSD part. These CP+Jordan and CP+GSD representations will be discussed
in sections 6.1 and 6.3, respectively. In section 6.2, we show how the GSD solution
can be decomposed into rank-1 terms using the CP+Jordan representation. Here, the
number of rank-1 terms equals the rank of the solution array.

6.1. Optimal GSD solution in CP+Jordan form. Let X be the optimal
solution of the GSD problem (6.2). As explained above, we assume that X2X−1

1 has
only real eigenvalues but is not diagonalizable. Next, we show how to obtain the non-
diverging CP components from X and write the limit points of the groups of diverging
CP components in Jordan form. We have Xk = Qa Rk QT

b , k = 1, 2 from a GSD algo-
rithm. Since X ∈ RI , the matrices Rk, k = 1, 2 are nonsingular. Let the Jordan nor-
mal form PJP−1 of R2R−1

1 be given by J = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr(μr)),
where Jmj (μj) denotes an mj × mj Jordan block with mj ≥ 2, and r ≥ 1. Note that
the Jordan form J of R2R−1

1 is also the Jordan form of X2X−1
1 . Hence, R2R−1

1 also
has only real eigenvalues but is not diagonalizable.

Now the following decomposition of X can be obtained. Let C1 = Ip, C2 =
diag(λ1, . . . , λp), and let A contain the corresponding columns of QaP and BT the
corresponding rows of P−1R1QT

b . For the r Jordan blocks Jmj , let Kj contain the
corresponding columns of QaP and LT

j the corresponding rows of P−1R1QT
b . Then
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X2 = AC2 BT +
r∑

j=1

Kj Jmj LT
j ,(6.3)

X1 = AC1 BT +
r∑

j=1

Kj Imj LT
j .(6.4)

Hence, we have decomposed the optimal GSD solution X into a nondiverging CP part
and r parts with a Jordan block Jmj instead of a diagonal matrix. In this way, di-
verging CP components are avoided, i.e., the components A,K1, . . . ,Kr are linearly
independent (since they are columns of QaP), the components B,L1, . . . ,Lr are lin-
early independent (since they are the rows of P−1R1QT

b ), and none of the elements
in the decomposition tends to infinity. Note that each part of the decomposition
(6.3)–(6.4) can be written in GSD form by using QR- and QL-decompositions as in
the proof of (i) of Lemma 4.3.

If the eigenvalues λ1, . . . , λp are distinct, then the CP-part of the representa-
tion (6.3)–(6.4) is essentially unique. Indeed, we have p components and k-ranks
kA = kB = p and kC = 2, and essential uniqueness follows from Kruskal’s condition
(1.4). From the uniqueness properties of the Jordan form of R2R−1

1 it follows that
if μ1, . . . , μr are distinct, then the representation of the non-CP part of (6.3)–(6.4)
is unique up to the order of the Jordan blocks Jmj and the scaling of the principal
vectors in P.

Although the decomposition (6.3)–(6.4) features not only rank-1 terms, it is es-
sentially unique and may be interpretable to the researcher. From a computational
as well as a practical point of view, this is a considerable improvement with respect
to facing diverging CP components.

In practice, the matrix R2R−1
1 of the corresponding optimal GSD solution ob-

tained from a GSD algorithm does not have exactly identical eigenvalues. To be able
to “recognize” the identical eigenvalues of R2R−1

1 and their geometric multiplicities,
the GSD algorithm must have a sufficiently small stopping criterion. The identical
eigenvalues can then be estimated as the average of the ones which are “close to-
gether.” The Jordan normal form of R2R−1

1 can be estimated by using, e.g., the
method proposed in Golub and Wilkinson [11]. Below, we present the algorithm to
obtain representation (6.3)–(6.4). The algorithm is formulated for general R (instead
of R = I) in order to make it applicable to the I × J × 2 case as well (see section 7).

Algorithm for CP+Jordan representation of optimal GSD solution.

Input: Optimal GSD solution Xk = Qa Rk QT
b , k = 1, 2, where R2R−1

1 has only
real eigenvalues but is not diagonalizable.
Output: CP+Jordan representation (6.3)–(6.4).

1. Calculate the Jordan form PJP−1 of R2R−1
1 , where

J = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr (μr)). Here, Jmj (μj) denotes an
mj × mj Jordan block with mj ≥ 2, and r ≥ 1.

2. Set C1 = Ip, C2 = diag(λ1, . . . , λp). For eigenvalues λ1, . . . , λp, let A
contain the corresponding columns of QaP and BT the corresponding rows
of P−1R1QT

b .
3. For Jordan block Jmj , let Kj contain the corresponding columns of QaP

and LT
j the corresponding rows of P−1R1QT

b , j = 1, . . . , r.
4. The CP+Jordan representation (6.3)–(6.4) follows, with p nondiverging CP

components in A, B, C1, C2 and r limit points of groups of diverging CP
components (see section 3).
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The following result states that (6.3)–(6.4) can be written as a Tucker3 model
(1.2).

Proposition 6.1. Let the Jordan form of R2R−1
1 be given by diag(λ1, . . . , λp,

Jm1(μ1), . . . ,Jmr (μr)), where Jmj (μj) denotes an mj ×mj Jordan block with mj ≥ 2.
Set M = p + r + 1. The decomposition (6.3)–(6.4) can be written as a Tucker3 model
with an I × I × M core array and component matrices

[A |K1 | . . . |Kr], [B |L1 | . . . |Lr],
[

1 . . . 1 0 1 . . . 1
λ1 . . . λp 1 μ1 . . . μr

]
.(6.5)

The number of nonzeros in the core array equals 2I − (p + r).
Proof. The first p columns of the component matrices in (6.5) follow from the

CP part in (6.3)–(6.4). Next, we consider a Jordan block Jm(μ), with m ≥ 2. The
corresponding part in (6.3)–(6.4) can be written as

m∑
i=1

ki ⊗ li ⊗
(

1
μ

)
+

m−1∑
i=1

ki ⊗ li+1 ⊗
(

0
1

)
,(6.6)

where ki and li are the columns of the corresponding matrices K and L, respectively.
Hence, (6.6) uses the corresponding columns of the component matrices in (6.5) and
adds m + (m − 1) nonzeros to the Tucker3 core array.

Since the CP part adds p nonzeros to the Tucker3 core array, the total number
of nonzeros equals

p +
r∑

j=1

(2mj − 1) = p − r + 2
r∑

j=1

mj = p − r + 2(I − p) = 2I − (p + r).(6.7)

This completes the proof.
Note that the restricted Tucker3 model in Proposition 6.1 is unique up to the

indeterminacies in the CP+Jordan representation (6.3)–(6.4).
The result of Proposition 6.1 is in line with Harshman [15], who explains diverging

CP components for 2 × 2 × 2 arrays as “Parafac trying to model Tucker variation.”
Paatero [33] also noticed that his constructed sequences of diverging CP components
have a limit that can be written in Tucker3 form.

The decomposition (6.3)–(6.4) of X into p rank-1 terms and r rank-(mj, mj, 2)
terms (i.e., the ranks of the vectors in the three modes are mj , mj , and 2) is an
example of the block-term decomposition introduced in De Lathauwer [8].

Remark 6.2. Note that it is not our goal to find a CP+Tucker3 representation of
Z, for which Z2Z−1

1 has some complex eigenvalues. Such a representation exists if the
eigenvalues of Z2Z−1

1 are distinct and can be obtained from the transformation

Z2Z−1
1 = KΛK−1,(6.8)

where Λ = diag(λ1, . . . , λs,Γ1, . . . ,Γt) and Γi is 2 × 2 and corresponds to a pair of
complex eigenvalues of Z2Z−1

1 ; see, e.g., Horn and Johnson [19]. Instead, it is our
goal to find the limit point X of the sequence of CP updates featuring diverging
components, and (6.3)–(6.4) is a representation of that point X.

Next, we illustrate the CP+Jordan algorithm by revisiting the 4×4×2 example in
(1.7)–(1.10) that was also discussed at the end of section 3. Using the Jacobi algorithm
of De Lathauwer, De Moor, and Vandewalle [6] with R = 4 and a convergence criterion
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of 1e-9, we obtain the following optimal GSD solution for Z in (1.7):

Qa =

⎡
⎢⎢⎣

0.1279 0.8039 −0.5519 0.1813
−0.7946 −0.1776 −0.2749 0.5113
−0.5895 0.3628 0.1606 −0.7037
0.0690 −0.4367 −0.7708 −0.4588

⎤
⎥⎥⎦ ,(6.9)

Qb =

⎡
⎢⎢⎣

−0.6328 0.3387 −0.0964 −0.6896
0.6382 0.5502 −0.4778 −0.2486
0.1774 0.5110 0.8406 −0.0294
−0.4011 0.5670 −0.2363 0.6795

⎤
⎥⎥⎦ ,(6.10)

R1 =

⎡
⎢⎢⎣

−1.1875 −1.3604 1.1724 −1.5430
0 −1.0758 0.4567 −0.3733
0 0 −0.9103 −0.7889
0 0 0 1.5915

⎤
⎥⎥⎦ ,(6.11)

R2 =

⎡
⎢⎢⎣

1.8323 0.0832 0.0009 −0.0168
0 −0.5285 −2.5802 −0.9022
0 0 −0.4472 1.4516
0 0 0 0.7818

⎤
⎥⎥⎦ .(6.12)

The GSD algorithm terminated after 24 sweeps with an error sum-of-squares of
0.051016. The latter is less than the value of 0.051204 obtained by the CP algo-
rithm in section 1, indicating that the GSD solution is closer to Z than the final CP
update. The sum-of-squares distance between the GSD solution Xk = Qa Rk QT

b ,
k = 1, 2 and the final CP update Yk = ACk BT , k = 1, 2 is only 3.2144e-7. For the
GSD solution, the eigenvalues of X2X−1

1 are

−1.5430, 0.4912, 0.4912, 0.4912.(6.13)

Hence, for the final CP update, the three eigenvalues of Y2Y1 that were close together
in (3.3) have become identical in the limit point X.

Next, we apply the CP+Jordan algorithm to the obtained GSD solution above.
For the CP-part, we obtain

A =

⎡
⎢⎢⎣

0.1279
−0.7946
−0.5895
0.0690

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.8259
0.0385
−0.4005
−0.3950

⎤
⎥⎥⎦ , C =

[
2.8918
−4.4621

]
,(6.14)

where the columns of A and B are normalized to length 1. Comparing this to the
final CP-update in (1.8)–(1.10), we see that (6.14) is the nondiverging CP component
of the final CP update. For the non-CP part of the CP+Jordan representation, we
obtain

K =

⎡
⎢⎢⎣

−0.6779 −0.0194 −0.0500
0.6690 −0.0900 −0.1191
0.1326 −0.2662 0.1248
0.2744 0.3003 0.1064

⎤
⎥⎥⎦ , L =

⎡
⎢⎢⎣

0.8879 −2.6832 5.3125
1.7433 −2.6564 1.9149
−0.7556 3.1066 0.2265
1.0387 1.3806 −5.2348

⎤
⎥⎥⎦ ,

(6.15)

J =

⎡
⎣ 0.4912 1 0

0 0.4912 1
0 0 0.4912

⎤
⎦ .(6.16)
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Hence, the limit point of the three diverging CP components is represented as (6.15)–
(6.16).

6.2. A rank-revealing decomposition of the optimal GSD solution. Here
we discuss how one may obtain a decomposition into rank-1 terms of the optimal
GSD solution, where the number of rank-1 terms equals the rank of the solution
array X. We make use of the CP+Jordan representation (6.3)–(6.4). The Tucker3
representation of X in Proposition 6.1 decomposes X into 2I − (p + r) rank-1 terms.
Lemma 2.2 states that X has rank I + r. Hence, the number of rank-1 terms in the
Tucker3 representation is equal to rank⊗(X) = I + r if and only if I = p + 2r. That
is, if all Jordan blocks Jmj (μj) have size mj = 2. In this case, (6.3)–(6.4) itself is a
rank-revealing decomposition of X. From (6.6), it follows that for p = 0, r = 1, and
m = 2, the representation has the form (1.11) of De Silva and Lim [10] with x1 = k1,
x2 = l2, x3 =

(
1
µ

)
, y1 = k2, y2 = l1, and y3 =

(
0
1

)
. For general p and r and mj = 2

for j = 1, . . . , r, the representation (1.11) can be generalized to

X =
p∑

i=1

z(i)
1 ⊗ z(i)

2 ⊗ z(i)
3 +

r∑
j=1

(x(j)
1 ⊗ x(j)

2 ⊗ y3 + x(j)
1 ⊗ y(j)

2 ⊗ x(j)
3

+ y(j)
1 ⊗ x(j)

2 ⊗ x(j)
3 ).

(6.17)

If there is a Jordan block Jmj (μj) with size mj ≥ 3, then the number of rank-1
terms in the decomposition (6.3)–(6.4) is larger than rank⊗(X) = I + r. However,
a method to obtain a decomposition into I + r rank-1 terms from (6.3)–(6.4) can
be found in Ja’ Ja’ [21]. Consider the m × m × 2 array consisting of the slices
Im and Jm(μ), with m ≥ 2. From Lemma 2.2, it follows that this array has rank
m + 1. Let w = (w0 w1 . . . wm−1)T , and let em denote the mth column of Im. Then
Jm(μ) − em wT has characteristic polynomial f(λ − μ), with

f(x) = w0 + w1 x + · · · + wm−1 xm−1 − xm.(6.18)

It follows that we can pick w such that f(x) has m distinct real roots. By Lemma 2.1,
the m × m × 2 array with slices Im and Jm(μ) − em wT has rank m, and a rank-m
decomposition can be obtained from an eigendecomposition of its second slice. Since
we have subtracted the rank-1 slice em wT , this gives us a rank-(m+1) decomposition
of the array with Im and Jm(μ).

Applying this procedure to each Jordan block in (6.3)–(6.4) yields a decomposition
of X into p +

∑r
j=1(mj + 1) = I + r rank-1 terms. Since we have freedom in choosing

the vector w, this decomposition is not essentially unique (also for mj = 2).

6.3. Optimal GSD solution in CP+GSD form. Since the Jordan form has
a discontinuous transition from diagonalizable to nondiagonalizable matrices, it is nu-
merically unstable, and the obtained Jordan form is extremely sensitive to tolerances
for “recognizing” identical eigenvalues; see the discussion in Golub and Van Loan [12].
It follows from (6.3)–(6.4) that the complete non-CP part may also be represented in
a full GSD of size I−p. For this, one only has to determine the eigenvalues of X2X−1

1

with algebraic multiplicity equal to 1, which is numerically more stable. Here, we
show how the CP part and the GSD of the non-CP part can be computed without
first computing the Jordan representation (6.3)–(6.4). Also, if one is only interested in
obtaining the nondiverging CP components, computing the CP-part of the CP+GSD
representation is an efficient way.
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We assume that the optimal GSD solution X has been obtained from a GSD
algorithm and the GSD Xk = Qa Rk QT

b , k = 1, 2 is known. Let the Jordan form
of R2R−1

1 be given by J = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr (μr)), where Jmj (μj)
denotes an mj × mj Jordan block with mj ≥ 2, and r ≥ 1. The eigenvalues and
the Jordan form J of R2R−1

1 are the same as those of X2X−1
1 and those of R−1

1 R2.
As mentioned above, we assume that R2R−1

1 has only real eigenvalues but is not
diagonalizable. In the following, we assume that the eigenvalues λ1, . . . , λp are known.
For this, it is not necessary to compute the complete Jordan form J.

First, we show how to obtain the CP-part of (6.3)–(6.4). For simplicity, we assume
that none of the eigenvalues μj is equal to a λi. Let Ra have as columns the eigen-
vectors of R2R−1

1 corresponding to the eigenvalues λ1, . . . , λp. From the discussion in
section 6.1, it follows that A = Qa Ra. Next, we find B. If R2R−1

1 = PJP−1, then
R−1

1 R2 = (R−1
1 P)J (R−1

1 P)−1. Let Rb have as rows the left eigenvectors of R−1
1 R2

corresponding to the eigenvalues λ1, . . . , λp, i.e., Rb R−1
1 R2 = diag(λ1, . . . , λp)Rb.

Then we have B = Qb RT
b (see section 6.1). Since R2R−1

1 and R−1
1 R2 are upper

triangular, the columns of Ra and the rows of Rb are the columns and rows, re-
spectively, of an I × I upper triangular matrix. We normalize the rows of Rb such
that the first nonzero element becomes 1, and we normalize the columns of Ra such
that the last nonzero element becomes 1. Let Ck be the p × p diagonal matrix con-
taining the diagonal elements of Rk corresponding to the locations of λ1, . . . , λp on
the diagonal of R2R−1

1 . It now follows that the CP-part in (6.3)–(6.4) is equal (up
to scaling/rescaling and a joint permutation of the p CP components) to ACk BT ,
k = 1, 2.

Note that the eigenvalues λ1, . . . , λp may appear anywhere on the diagonal of
R2R−1

1 . Hence, unlike the ordering in the Jordan form J, the eigenvalues λj do
not need to appear as the first p diagonal elements of R2R−1

1 . This is due to the
permutation indeterminacy of the GSD solution. See also the discussion at the end
of section 5.

Next, we show how to obtain the GSD of the non-CP part of (6.3)–(6.4). Define
Tk = Rk −Ra Ck Rb, k = 1, 2. Then Yk = Qa Tk QT

b , k = 1, 2 is the non-CP part of
(6.3)–(6.4). From (6.3)–(6.4), it follows that Y1 = KII−p LT and Y2 = KJ̃LT for
I × (I −p) matrices K and L of full column rank and an (I −p)× (I −p) Jordan form
J̃. This implies that Y1 and Y2 have rank I−p and identical column and row spaces.
These properties of Y1 and Y2 also hold for T1 and T2. Moreover, by definition, Tk

is upper triangular and has zeros on the diagonal corresponding to the locations of
λ1, . . . , λp on the diagonal of R2R−1

1 . From the I locations on the diagonal of R2R−1
1 ,

let 1 ≤ i1 < i2 < · · · < iI−p ≤ I be those not containing λ1, . . . , λp. Let T̃k contain
the columns i1, i2, . . . , iI−p of Tk, in the same order as they appear in Tk, k = 1, 2.
Then each of these columns has a nonzero diagonal element in Tk, and since Tk is
upper triangular, T̃k has rank I − p. Since Tk also has rank I − p, it follows that the
column spaces of T̃k and Tk are identical. Also, the column spaces of T̃1 and T̃2 are
identical. We write Tk = T̃k HT

k , where Hk = TT
k T̃k (T̃T

k T̃k)−1, k = 1, 2. We need
the following lemmas.

Lemma 6.3. There holds T̃k = Q̃ R̃k for some I×(I−p) columnwise orthonormal
Q̃ and some (I − p) × (I − p) upper triangular R̃k, k = 1, 2.

Proof. Let T̃k contain columns i1, . . . , iI−p of Tk, with 1 ≤ i1 < i2 < · · · <

iI−p ≤ I. Let t(k)
in

denote column in of Tk, which is column n of T̃k, k = 1, 2. Then
t(k)
in

has the last I − in elements equal to zero and element in nonzero. We obtain
Q̃ and R̃1 from a QR-decomposition of T̃1 by means of the Gram–Schmidt process.
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Let

v1 = t(1)
i1

and vn = t(1)
in

−
n−1∑
j=1

projvj
t(1)
in

, n = 2, . . . , I − p,(6.19)

where projv t = (tTv)/(vT v)v denotes the orthogonal projection of t onto v. The
columns of Q̃ are the unit length versions of v1, . . . ,vI−p, and the elements of R̃1

follow from (6.19).
The columns of Q̃ form an orthonormal basis for the column space of T̃1 and,

hence, also for the column space of T̃2. This implies that for every column t(2)
in

, there
is a vector w such that

t(2)
in

= Q̃w.(6.20)

From (6.19), it follows that column j of Q̃ has the last I − ij elements equal to zero
and element ij nonzero, j = 1, . . . , I − p. Since t(2)

in
has the last I − in elements equal

to zero, (6.20) implies that t(2)
in

lies in the space spanned by the first n columns of
Q̃. Hence, w in (6.20) has the last I − p − n elements equal to zero. It follows that
T̃2 = Q̃ R̃2 for some (I − p) × (I − p) upper triangular R̃2. Since Q̃ has full column
rank, the matrix R̃2 is uniquely determined. This completes the proof.

Recall that, since the column spaces of T̃k and Tk are identical, we may write
Tk = T̃k HT

k , k = 1, 2.
Lemma 6.4. Let Hk satisfy Tk = T̃k HT

k , k = 1, 2. Then H1 = H2.
Proof. Since T̃k contains columns i1, . . . , iI−p of Tk, it follows that rows i1, . . . ,

iI−p of Hk are equal to rows 1, . . . , I − p of II−p, k = 1, 2. Let the row permutation

Π be such that ΠHk =
[
II−p

H̃k

]
.

Since Hk has full column rank, rank(Tk) = I − p, and TT
k = Hk T̃T

k , the column
space of Hk is identical to the column space of TT

k . Moreover, since the row spaces
of T1 and T2 are identical, the column spaces of H1 and H2 are also identical. It
follows that each column of ΠH1 must lie in the column space of ΠH2. Since both
matrices have II−p as their first I − p rows, this yields that ΠH1 = ΠH2. Hence,
H1 = H2, which completes the proof.

Using Lemmas 6.3 and 6.4, the GSD of the non-CP part of (6.3)–(6.4) can be
computed as follows. From a QR-decomposition of T̃1, we obtain T̃1 = Q̃ R̃1. The
matrix R̃2 in Lemma 6.3 follows from R̃2 = Q̃T T̃2. The matrix H = H1 = H2 in
Lemma 6.4 is obtained as H = TT

1 T̃1 (T̃T
1 T̃1)−1. Next, let H = Q̂ R̂T be a QL-

decomposition of H with an I × (I − p) columnwise orthonormal Q̂ and an (I − p)×
(I − p) upper triangular R̂. It follows that

Yk = Qa Tk QT
b = Qa T̃k HT QT

b = (Qa Q̃) (R̃k R̂) (Qb Q̂)T , k = 1, 2(6.21)

is a full GSD of size I − p of the non-CP part of (6.3)–(6.4). Below, we present the
algorithm to obtain a CP+GSD representation of the optimal GSD solution X. The
algorithm is formulated for general R (instead of R = I) in order to make it applicable
to the I × J × 2 case as well (see section 7).
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Algorithm for CP+GSD representation of optimal GSD solution.

Input: Optimal GSD solution Xk = Qa Rk QT
b , k = 1, 2, where R2R−1

1 has only
real eigenvalues but is not diagonalizable.
Output: CP+GSD representation Xk = ACk BT + Q1 R(0)

k QT
2 , k = 1, 2.

1. Calculate the eigenvalues λ1, . . . , λp of R2R−1
1 with algebraic multiplicity

1. Set Λ = diag(λ1, . . . , λp).
2. Determine Ra (R × p) as R2R−1

1 Ra = Ra Λ. Normalize the columns of
Ra such that the last nonzero element becomes 1. Determine Rb (p×R) as
Rb R−1

1 R2 = ΛRb. Normalize the rows of Rb such that the first nonzero
element becomes 1.

3. Set A = QaRa and B = QbRT
b . Let Ck be the diagonal matrix containing

the diagonal elements of Rk corresponding to the locations of λ1, . . . , λp

on the diagonal of R2R−1
1 , k = 1, 2. The p nondiverging CP components

are now obtained as ACk BT , k = 1, 2.
4. Set Tk = Rk − Ra Ck Rb, k = 1, 2. Let T̃k contain the R − p columns of

Tk with a nonzero diagonal element, in the same order as they appear in
Tk, k = 1, 2.

5. Compute the QR-decomposition T̃1 = Q̃ R̃1 and set R̃2 = Q̃T T̃2.
6. Set H = TT

1 T̃1 (T̃T
1 T̃1)−1 and compute the QL-decomposition H = Q̂ R̂T .

7. Set Q1 = Qa Q̃, Q2 = Qb Q̂ and R(0)
k = R̃k R̂, k = 1, 2. The size-(R − p)

GSD representation of the limit point of the diverging CP components is
now obtained as Q1 R(0)

k QT
2 , k = 1, 2.

To illustrate the CP+GSD algorithm, we return once again to the 4×4×2 example
in (1.7)–(1.10) that was also discussed at the end of sections 3 and 6.1. We apply the
CP+GSD algorithm to the optimal GSD solution (6.9)–(6.12) for Z in (1.7). For the
CP-part, we obtain

Ra =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , RT

b =

⎡
⎢⎢⎣

1.0000
0.3111
0.8314
2.0353

⎤
⎥⎥⎦ , C1 = −1.1875, C2 = 1.8323.(6.22)

Up to scaling/rescaling, the CP-part A = QaRa, B = QbRT
b , C1, C2 in (6.22) is

equal to the CP-part (6.14) of the CP+Jordan representation. For the GSD-part, we
obtain

Q1 =

⎡
⎢⎢⎣

−0.6779 −0.0470 0.2357
0.6690 −0.2187 0.5479
0.1326 −0.6466 −0.6812
0.2744 0.7293 −0.4244

⎤
⎥⎥⎦ , Q2 =

⎡
⎢⎢⎣

0.3387 −0.0964 −0.6896
0.5502 −0.4778 −0.2486
0.5110 0.8406 −0.0294
0.5670 −0.2363 0.6795

⎤
⎥⎥⎦ ,

(6.23)

R(0)
1 =

⎡
⎣ 1.4627 −1.7991 −0.3176

0 1.5699 1.1872
0 0 1.5963

⎤
⎦ , R(0)

2 =

⎡
⎣ 0.7185 2.9293 3.2016

0 0.7712 −2.5885
0 0 0.7841

⎤
⎦ .

(6.24)
Hence, the limit point of the three diverging CP components is represented as (6.23)–
(6.24).
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Table 7.1

Conjectures of Stegeman [40] on the occurrence of diverging CP components for a generic
I × J × 2 array Z. Here, I ≥ J ≥ 2 and R ≥ 2.

Case Z ∈ R
I×J×2 Rank⊗(Z) R Diverging CP components

2 I = J I + 1 R = I almost everywhere

3 I = J I + 1 R < I positive volume

5 I = J I R < I positive volume

8 I > J min(I, 2J) R = J positive volume
9 I > J min(I, 2J) R < J positive volume

7. Extension to I ×J ×2 arrays and general R. Stegeman [40] has mathe-
matically analyzed the cases of diverging CP components occurring for generic I×J×2
arrays and all values of R. The cases in which diverging components occur are listed
in Table 7.1, as well as the conjectures of Stegeman [40] on the frequency of their
occurrence. A generic I × J × 2 array Z has rank min(I, 2J) if I > J , and rank I or
I + 1 (both on a set of positive volume) if I = J ; see Ten Berge and Kiers [44].

It is shown in [40] that the cases of diverging CP components in Table 7.1 can be
transformed to Case 2 (with I = J = R), which we have considered so far. Next, we
extend our results in the previous sections by showing that in all cases in Table 7.1,
the GSD approach may be used to avoid the problem of diverging CP components.
Analogous to our previous results, the optimal GSD solution is the limit point of the
sequence of CP updates (whether it features diverging components or not) and may
be decomposed into a nondiverging CP-part and a Jordan part or into a nondiverging
CP-part and a smaller GSD part.

The GSD model for an I × J × 2 array Z is

Zk = Qa Rk QT
b + Ek, k = 1, 2,(7.1)

where Qa (I×R) and Qb (J×R) are columnwise orthonormal and Rk are R×R upper
triangular, k = 1, 2. Without loss of generality, we assume I ≥ J . Also, we assume
R ≤ J (and R ≤ I) and R < rank⊗(Z). From Table 7.1, it can be seen that this
includes all cases. Finding Qa, Qb, R1, and R2, which minimize the sum-of-squares of
the residuals in (7.1), can be achieved by a modification of the Jacobi algorithm of De
Lathauwer, De Moor, and Vandewall [6]. This will be explained in section 7.1 below.

The proof of Proposition 4.2 can be used to show that the GSD model (7.1) for
I × J × 2 arrays always has an optimal solution. Analogous to (6.1)–(6.2), we define

P(I,J,R) = {Y ∈ R
I×J×2 : Y has a full GSD (7.1) with R1 and R2 nonsingular}

(7.2)
and the GSD problem

Minimize ‖Z− Y‖2(7.3)
subject toY ∈ P(I,J,R).

From the analysis in Stegeman [40], it follows that the set P(I,J,R) is closed, and hence,
problem (7.3) always has an optimal solution. In Cases 3, 5, 8, and 9 of Table 7.1, the
boundary of P(I,J,R) is the set P(I,J,R) itself, and the optimal solution X of the GSD
problem (7.3) has R2R−1

1 with only real eigenvalues, some of which are identical. The
problem of diverging CP components occurs if R2R−1

1 is not diagonalizable; see [40].
In this case, the GSD of X cannot be fully transformed to a CP representation, and
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sequences of CP updates converging to X feature diverging components. As in Case 2
of Table 7.1, two alternatives are a CP+Jordan or a CP+GSD representation. These
can be obtained by using the algorithms in sections 6.1 and 6.3, respectively. As
explained in section 6.2, a decomposition of X into rank⊗(X) terms of rank 1 can be
obtained from the CP+Jordan representation of X using the method of Ja’ Ja’ [21].

If, in Cases 3, 5, 8, and 9 of Table 7.1, the optimal GSD solution X has a GSD with
R2R−1

1 diagonalizable, then the GSD can be transformed into a full CP representation
of X, and the problems of diverging components do not occur. That is, X is also an
optimal solution of the CP problem. The CP representation of R1 and R2 can be ob-
tained from the eigendecomposition of R2R−1

1 analogous to (2.2). Premultiplying by
Qa and postmultiplying by QT

b then yields the full CP representation for X1 and X2.

7.1. The Jacobi algorithm for the GSD problem of I × J × 2 arrays.
Here, we show how the Jacobi algorithm of De Lathauwer, De Moor, and Vandewalle
[6] for solving the GSD problem (6.2) can be modified to the case of I × J × 2 arrays
and all values of R not larger than I and J . That is, the modified Jacobi algorithm
can be used to solve the more general class of GSD problems (7.3).

Let I = J = R. The Jacobi algorithm of [6] sets out to find (Qa,Qb,R1,R2) such
that QT

a ZkQb, k = 1, 2 are as upper triangular as possible. Their upper triangular
parts are then the estimates of Rk, k = 1, 2. The estimates (Qa,Qb,R1,R2) are
updated by applying Givens rotations to the rows and columns of QT

a ZkQb, k = 1, 2,
as follows. Let Gij be equal to II except for the entries (Gij)ii = (Gij)jj = cosα

and (Gij)ji = −(Gij)ij = sin α, where α is the rotation angle. Let G̃ij be defined
as Gij for a rotation angle β. One sweep of the Jacobi algorithm determines for
each (i, j) with 1 ≤ i < j ≤ I, the optimal rotation angles α and β such that
GijQT

a ZkQbG̃T
ij , k = 1, 2 are as upper triangular as possible. The updated estimates

of (Qa,Qb,R1,R2) are given by QaGT
ij , QbG̃T

ij , and GijRkG̃T
ij , k = 1, 2.

Next, consider the general case where possibly I �= J and R ≤ I, R ≤ J . In
the modified Jacobi algorithm, we have the orthonormal variables Q̃a (I × I) and Q̃b

(J × J). The modified Jacobi algorithm maximizes the sum-of-squares of the upper
triangular parts of the first R rows and columns of R̃k = Q̃T

a ZkQ̃b, k = 1, 2. These
R × R upper triangular parts are then the estimates of Rk, k = 1, 2. The estimates
of Qa and Qb are the first R columns of Q̃a and Q̃b, respectively. Each sweep of the
algorithm consists of two phases. In the first phase, the Givens rotations Gij (I × I)
and G̃ij (J × J) are determined as above for each (i, j) with 1 ≤ i < j ≤ R. Within
the first R rows and columns of R̃k, k = 1, 2, these rotations make the structure as
upper triangular as possible.

In the second phase, rotations Gi, 1 ≤ i ≤ R are determined such that they
transfer as much energy as possible from rows R + 1, . . . , I of R̃k to row i of (the
upper triangular part of) R̃k, k = 1, 2. Independently, rotations G̃j , 1 ≤ i ≤ R
are determined such that they transfer as much energy as possible from columns
R + 1, . . . , J of R̃k to column j of (the upper triangular part of) R̃k, k = 1, 2. We
first show how to obtain Gi. Let

R̂i =

⎡
⎢⎢⎢⎣

(R̃1)ii . . . (R̃1)iR (R̃2)ii . . . (R̃2)iR

(R̃1)R+1,i . . . (R̃1)R+1,R (R̃2)R+1,i . . . (R̃2)R+1,R

...
...

...
...

(R̃1)I,i . . . (R̃1)I,R (R̃2)I,i . . . (R̃2)I,R

⎤
⎥⎥⎥⎦ = SDVT

(7.4)
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be the singular value decomposition (SVD) of R̂i. Then ST R̂i is an orthogonal
rotation of the rows of R̂i such that its first row has maximum sum-of-squares. The
square root of this is equal to the dominant singular value of R̂i. From ST , the
rotation Gi can be obtained.

The computation of G̃j is analogous. Let

R̄j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(R̃1)1j (R̃1)1,R+1 . . . (R̃1)1,J

...
...

...
(R̃1)jj (R̃1)j,R+1 . . . (R̃1)j,J

(R̃2)1j (R̃2)1,R+1 . . . (R̃2)1,J

...
...

...
(R̃2)jj (R̃2)j,R+1 . . . (R̃2)j,J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= SDVT(7.5)

be the SVD of R̄j. Then R̄jV is an orthogonal rotation of the columns of R̄j such
that its first column has maximum sum-of-squares. The square root of this is equal
to the dominant singular value of R̄j . The rotation G̃j can be obtained from V.

Below, we present the steps of one sweep of the modified Jacobi algorithm.

One sweep of the Modified Jacobi Algorithm for the GSD problem.

Input: I × J × 2 array Z with I × J slices Zk, k = 1, 2.
Previous GSD update: Q̃a (I × I) and Q̃b (J × J) orthonormal, and R̃k (I × J),
k = 1, 2.
Output: New GSD update Q̃a, Q̃b, and R̃k, k = 1, 2.

1. (Do for 1 ≤ i < j ≤ R.) Let Gij be equal to II except for the entries
(Gij)ii = (Gij)jj = cosα and (Gij)ji = −(Gij)ij = sin α, where α is the
rotation angle. Let G̃ij be equal to IJ and analogous to Gij for a rotation
angle β. Using the Jacobi algorithm of [6], determine α and β such that
the sum-of-squares of the upper triangular part of the first R rows and
columns of GijR̃kGT

ij , k = 1, 2 are maximal.
Update Q̃a → Q̃aGT

ij , Q̃b → Q̃bG̃T
ij , and R̃k → GijR̃kG̃T

ij , k = 1, 2.
2. (Do for 1 ≤ i ≤ R.) Compute the SVD (7.4) and let smn denote the

elements of S. Let Gi be equal to II except (Gi)ii = s11, (Gi)i,R+m =
s1,m+1 for m = 1, . . . , I−R, (Gi)R+m,i = sm+1,1 for m = 1, . . . , I −R, and
(Gi)mn = sm−R+1,n−R+1 for R + 1 ≤ m, n ≤ I.
Update Q̃a → Q̃aGT

i and R̃k → GiR̃k, k = 1, 2.
3. (Do for 1 ≤ j ≤ R.) Compute the SVD (7.5) and let vmn denote the

elements of VT . Let Gj be equal to IJ except (Gj)jj = v11, (Gj)j,R+m =
v1,m+1 for m = 1, . . . , I − R, (Gj)R+m,j = vm+1,1 for m = 1, . . . , I − R,
and (Gj)mn = vm−R+1,n−R+1 for R + 1 ≤ m, n ≤ I.
Update Q̃b → Q̃bGT

j and R̃k → R̃kG̃T
j , k = 1, 2.

8. Numerical experiments. Here, we illustrate the GSD method to avoid di-
verging CP components for generic I×J×2 arrays. For each of the cases in Table 7.1,
we randomly generate 50 arrays Z of a chosen size. For each such Z, we use the (mod-
ified) Jacobi algorithm of De Lathauwer, De Moor, and Vandewall [6] to compute the
optimal solution X of the GSD problem (7.3), in terms of its full GSD representation
(Qa,Qb,R1,R2). The stopping criterion of the (modified) Jacobi algorithm is set to
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Table 8.1

Types of optimal solutions encountered when solving the GSD problem (7.3) for randomly gen-
erated arrays Z in the cases of Table 7.1. For each case, the value of (I, J, R), the number of runs,
and the average time to compute the GSD solution and the Jordan form of R2R

−1
1 (on a Pentium

4 PC) are given. In all runs, the matrix R2R
−1
1 has distinct eigenvalues λ1, . . . , λp, μ1, . . . , μr,

where λj has algebraic multiplicity 1 and μi has algebraic multiplicity larger than 1 and geometric
multiplicity 1. For each case, the number of solutions with the same (p, r) value are given.

Case, (I, J, R), runs, time (p, r) Freq. (p, r) Freq. (p, r) Freq. (p, r) Freq.

Case 2 (0,2) 4 (1,2) 7 (2,3) 2 (4,1) 3
(I, J, R) = (10, 10, 10) (0,3) 2 (1,3) 2 (3,1) 5 (4,2) 1

48 runs, 58 sec. (0,4) 2 (2,1) 2 (3,2) 4 (5,2) 1
(1,1) 3 (2,2) 9 (3,3) 1

Case 3 (0,2) 5 (2,1) 1 (3,2) 5 (6,1) 1
(I, J, R) = (10, 10, 8) (1,1) 8 (2,2) 5 (4,1) 5

49 runs, 12 sec. (1,2) 3 (2,3) 1 (4,2) 3
(1,3) 3 (3,1) 7 (5,1) 2

Case 5 (1,1) 2 (2,2) 2 (3,2) 6 (6,1) 15
(I, J, R) = (10, 10, 8) (1,3) 1 (2,3) 1 (4,2) 4 (8,0) 12

50 runs, 32 sec. (2,1) 1 (3,1) 2 (5,1) 4

Case 8 (0,2) 4 (1,2) 10 (3,1) 4 (4,2) 3
(I, J, R) = (10, 8, 8) (0,3) 2 (2,1) 1 (3,2) 2 (5,1) 2

50 runs, 10 sec. (1,1) 3 (2,2) 15 (4,1) 4

Case 9 (0,2) 4 (1,2) 7 (2,2) 4 (4,1) 9
(I, J, R) = (10, 8, 6) (1,1) 4 (2,1) 5 (3,1) 10 (6,0) 6

49 runs, 3 sec.

1e-9. Next, the Jordan normal form of R2R−1
1 is computed, which we denote as J =

diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr(μr)), where Jmj (μj) denotes an mj × mj Jordan
block, with mj ≥ 2. Numerically, we treat two eigenvalues μ1 and μ2 as identical
if |μ1 − μ2| < 0.01. The multiple eigenvalue μ is then estimated as the mean of all
“identical” eigenvalues. The geometric multiplicity of an eigenvalue μ is determined
as the number of singular values sj of (R2R−1

1 − μ II) that satisfy |sj | < 0.0001.
In the (modified) Jacobi algorithm, we use the following initial values for (Qa,Qb,

R1,R2). In Case 2 in Table 7.1, these are obtained from the “generalized real Schur
decomposition” (GRSD) of Z1 and Z2, which is computed by means of the QZ-
method; see Golub and Van Loan [12]. In the other cases, the slices are first trans-
formed to UT

RZkVR, k = 1, 2, where UR contains the R dominant left singular vectors
of [Z1|Z2] and VR contains the R dominant right singular vectors of

[
Z1
Z2

]
. The initial

values are then obtained from UR, VR and the GRSD of UT
RZkVR, k = 1, 2.

Table 8.1 summarizes the results of computing the optimal solutions X of the
GSD problem (7.3) and the Jordan forms of R2R−1

1 . As can be seen, a wide variety
of values (p, r) is encountered among the optimal solutions X. In a few of the 50 runs
per case, some identical eigenvalues were not recognized. These runs do not appear
in Table 8.1. In all runs in Table 8.1, the estimated eigenvalues λ1, . . . , λp, μ1, . . . , μr

are distinct. Hence, each μi has algebraic multiplicity larger than 1 and geometric
multiplicity 1. As observed in Remark 3.2, this is probably due to the fact that the
set of these arrays lies dense on the boundary of the set P(I,J,R). For the solutions
with r ≥ 1, diverging CP components occur, and the GSD of the solution cannot be
fully transformed into a CP solution. The solutions with r = 0 can be transformed
into a nondiverging CP solution, i.e., diverging CP components do not occur.
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As can be seen from Table 8.1, all runs in Cases 2, 3, and 8 have a solution with
r ≥ 1. For Case 2, this is in line with the conjecture of Stegeman [40] in Table 7.1.
For Cases 3 and 8, this does not seem to support the conjectures of Stegeman [40]
in Table 7.1, which state that diverging CP components occur on a set of positive
volume (and not almost everywhere). However, trying different values of R in Case 3
yields 15 solutions with r = 0 (out of 50) for R = 4 and 3 solutions with r = 0 (out of
50) for R = 6. Hence, it seems that nondiverging CP solutions occur less frequently
as R is increased. The same holds for Case 8, where we get 13 solutions with r = 0
(out of 50) for R = J = 4 and 5 solutions with r = 0 (out of 50) for R = J = 6. For
Cases 5 and 9, there are both solutions with r = 0 as well as solutions with r ≥ 1,
which is in line with the conjectures of Stegeman [40] in Table 7.1.

Also listed in Table 8.1 are the average computational times (on a Pentium 4
PC) for the (modified) Jacobi algorithm to terminate and for the computation of the
Jordan form of R1R−1

1 . For Case 2, this is 58 seconds. For comparison, we tried
finding an approximate solution to the CP problem (3.2) for random Z as in Case
2, by using the multilinear engine of Paatero [32]. For a convergence criterion of
1e-15 over 1000 consecutive iterations, the algorithm terminated after 40 minutes.
However, for the obtained approximate solution X, the eigenvalues of X2X−1

1 are all
clearly distinct. On the other hand, running the Jacobi algorithm on the same Z
yields a solution with two groups of identical eigenvalues within 1 minute. Hence, to
obtain an equally accurate estimate of the solution X using a CP algorithm requires a
very small stopping criterion and takes prohibitively long. This shows the spectacular
improvement in efficiency when using the Jacobi GSD algorithm instead.

9. Discussion. We have proposed, analyzed, and demonstrated a method to
avoid diverging components when trying to fit the CP model for generic I × J × 2
arrays and R ≤ I, J components. Instead of fitting the CP model, we fit the GSD
model. The problems of diverging CP components are likely to occur because the
CP model has no optimal solution in these cases. We showed that the GSD model
always has an optimal solution. Moreover, the optimal GSD solution is the limit
point of the sequence of CP updates, whether it features diverging components or
not. Hereby we assume that the GSD model has a unique optimal solution (up
to trivial indeterminacies) which is always satisfied in our numerical experiments.
Also, we showed that the optimal GSD solution can be represented as the sum of
the nondiverging CP components and a sparse Tucker3 part (CP+Jordan form) or
as the sum of the nondiverging CP components and a smaller GSD part (CP+GSD
form). The CP+Jordan form is essentially unique and sparse. Although it is not an
outer-product decomposition, it may still be interpretable to the researcher. From
the CP+Jordan representation, we can obtain a rank-revealing decomposition of the
optimal GSD solution using the method of Ja’ Ja’ [21]. However, this decomposition
is not essentially unique. The CP+GSD representation is numerically more stable
and suitable if only the nondiverging CP components are of interest.

The GSD method not only yields an accurate solution, it is also much faster
than trying to fit CP in the case of diverging components. Hence, to compute the CP
solution for generic I×J×2 arrays, it is advisable to compute the GSD solution instead
and then transfer the nondiverging part of the solution into CP components. We may
conclude that from a computational as well as a practical point of view, our method
is a considerable improvement with respect to facing diverging CP components.

Our analysis is confined to arrays in the sets RI in (2.1) and P(I,J,R) in (6.1).
For a given array size, these sets are dense in the space of all arrays. The results
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of our numerical experiments and those in Stegeman [38, 40], together with the fact
that we consider generic arrays Z to be approximated, lead us to conclude that this
confinement is justified in practice. However, from a theoretical point of view, this
leaves open the question whether the complement set of RI or P(I,J,R) can contain
all best rank-R approximations of a generic I × J × 2 array.

Stegeman [39] has mathematically analyzed diverging CP components occurring
for several generic I × J × 3 arrays. Whether the SGSD method can also be used for
arrays with three slices is currently under investigation.
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